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P
lasmons, the collective excitations
sustained by conduction electrons at
metal surfaces, possess a number of

properties that make them attractive for
nanoscience:1 they provide a robust way
of strongly coupling light to nanometer-
sized structures, where they can be loca-
lized, giving rise to high electric-field inten-
sities, which can be orders of magnitude
larger than the externally applied light
intensity.2 Additionally, plasmons can be
tuned in frequency and spatial distribution
through varying the surface geometry and
environment.3 In particular, the sensitivity
to the environment is routinely used for
detecting the presence of minute amounts
of analytes.4 Recent advances in nanofabri-
cation are pushing plasmons to extreme
levels of confinement and field enhance-
ment, particularly by exploiting the gap
between two neighboring metal surfaces.
For example, colloid synthesis can produce
gaps between two metal nanoparticles of
fixed subnanometer separation by using mo-
lecular binders suchasdithiols5 (self-assembly
bottom-up approach). Also, top-down litho-
graphic methods provide a higher degree of
control over larger structures. The combined

use of metal-colloids assembly on litho-
graphic structures enables the simultaneous
control over large-scale areas and the size of
narrow gaps at designated positions. Alter-
natively, nanoprobes are used to hold metal
surfaces at subnanometer distances.6,7 The
extreme properties of plasmons in narrow
gaps have been widely used for sensing4,8

and nanoscale nonlinear optics,6 but the
number of applications in nanophotonics
keeps on increasing.
Molecular sensing constitutes a primary

example of application of the strong optical
field enhancement associated with loca-
lized plasmons. Single-molecule detection
and chemical determination are made possi-
ble by this localization using for example
surface-enhanced Raman scattering (SERS).9

Gold is commonly employed in these studies,
as it is chemically inert and displays surface
plasmons in the visible and near-infrared
(vis�NIR) parts of the spectrum, depending
ongeometry.10 In particular, nanometer-sized
point-like gaps flanked by metal surfaces
favor the formation of hotspots that can pro-
duce amplification of the externally applied
light intensity by over 5 orders ofmagnitude.9

The relevanceof thesegeometries for sensing
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ABSTRACT We use an extension of the hydrodynamic model to study

nonlocal effects in the collective plasmon excitations at metal surfaces and

narrow gaps between metals, including the surface spill-out of conduction

band electrons. In particular, we simulate metal surfaces consisting of a

smooth conduction-electron density profile and an abrupt jellium edge. We

focus on aluminum and gold as prototypical examples of simple and noble

metals, respectively. Our calculations agree with the dispersion relations

measured from planar surfaces for these materials. Systems involving small gaps display a regime of tunnelling electrons, which is partially captured by the

overlap of electron densities. This extension of the hydrodynamic model to cope with inhomogeneous density profiles provides a relatively fast and accurate

way of describing the optical response of metal surfaces at subnanometer distances.
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has prompted a large deal of work aimed at exploring
their optical performance.11�13 A strong redshift
is observed as the two metal surfaces are brought
closer together. Remarkably, classical electromagnet-
ism based upon the use of local dielectric functions for
the involved materials provides an accurate level of
description down to gap distances ∼1�2 nm in noble
metals. However, as many molecules of interest are
subnanometer in size, their interaction with metal
surfaces requires going beyond classical local theory,
so one is faced with nonlocality, in addition to the
surface spill-out of valence electrons,14�17 originating
in their wave nature. In this context, planar surfaces
have been studied for a long time,18 starting from
the specular-reflection model,19�24 which predicts a
nonlocal dispersion of the surface plasmons. The semi-
classical hydrodynamic model has been shown to lead
to similar effects by incorporating the quantum nature
ofvalenceelectrons through thehydrodynamicpressure
of the noninteracting homogeneous electron gas.24�29

Density-functional theory (DFT), particularly in the local
density approximation (LDA),15,17 has resulted in the
prediction of plasmon-frequency redshifts caused by
the smaller electron density at the surface spill-out
region in simple metals.14 This effect is accompanied
by weaker d-band screening in noble metals, in which
the net result is a surface plasmon blue shift.14 Similar
blue shifts are also observed in metal nanoparticles,11,13

accompanied by plasmon broadening that can be phe-
nomenologically described within an electron confine-
ment picture,30 while a recent theoretical development
based upon nonlocal response offers an alternative
explanation of this effect.31

The analysis of the gap geometry is more complex.
Recent studies of tips in close proximity have shown
the presence of spectral features that are missed by
classical theory at gap distances below ∼1 nm.7,17 The
plasmon redshift associatedwith the interaction across
the gap, as derived from classical theory, becomes a
blue shift at gap separations ∼0.5 nm,15 as confirmed
by experiment.7,12,13 Additionally, nonlocal effects have
been shown to cause a reduction in field enhance-
ment,23,27 which is consistent with recent experimental
observations.12 While a detailed first-principles analysis
of the gap geometry is still missing due to the numer-
ical complexity of the problem, simplified ap-
proaches have been followed such as the DFT-LDA
within a jelliummodel, which has been pioneered for
planar surfaces14 and recently used to investigate
curved morphologies including gaps.7,15�17,32

The need for fast numerical methods that are
capable of dealing with complex geometries has
stimulated computational research based upon the
Bloch hydrodynamic model,25 following a long series
of plasmonics studies.26�29 This model has been used
to investigate nonlocal effects in a variety of geom-
etries.27,33�43 Its simplicity allows us to derive analytical

expressions in simple shapes, such as the nonlocal
Mie coefficients of homogeneous and coated spheres
with inclusion of retardation effects.27 Upon the basis
of the use of a single parameter (the hydrodynamic
pressure coefficient β), this model successfully predicts
a reduction of field enhancement, as well as weaker
plasmon-hybridization redshifts.27,37,40 However, its
main drawback lies in the fact that surfaces and inter-
faces are described as abrupt boundaries. Although
this type of description is widely and successfully used
in classical electrodynamics modeling of plasmonics,
the effects of electron spill-out cannot be ignored at
short distances, where the abrupt interface assump-
tion is a severe approximation considering that the
conduction electron density profile extends ∼0.2 nm
outside the surface,44 therefore totaling a significant
fraction of the gap for subnanometer separations.
In this work, we use an extension of the hydro-

dynamic model that allows us to deal with smooth
electron density profiles, following previous studies of
this formalism for plasmons in planar surfaces45 and
second harmonic response.46 Eguiluz et al.45 presented
the fundamentals of this model and used it to predict
additional multipolar plasmon modes in sufficiently
diffused interfaces. Here, we study the effect of elec-
tron spill-out on the surface plasmons of simple geom-
etries that are relevant for plasmonics applications,
such as planar surfaces, narrowgaps, and thin films, using
realistic DFT-LDA density profiles obtained from the
jellium model for gold and aluminum44 (see Figure S2a
in the SI), assuming a local variation of the hydrody-
namic pressure coefficient β, as well as a sharp edge of
the d-band screening background. We find agreement
with available experiments for planar surfaces, as well as
a strong influence of the density profiles when compar-
ing sharp and smooth boundaries: the effects of elec-
tron spill-out are generally dominant with respect to
those originating in a finite hydrodynamic pressure.

RESULTS AND DISCUSSION

Inhomogeneous Hydrodynamic Model. It is instructive to
briefly revise the fundamentals of the hydrodynamic
model, in which the optical response of a nanostruc-
tured metal is described in terms of a continuous
bounded electron gas that evolves according to the
hydrodynamic Euler equation25,45,46

n(D=Dtþ γþ v 3r)mev ¼ �rp � enE (1)

where n is the conduction electron density, v is the
electron velocity, γ is an intrinsic inelastic damping
rate, p is the hydrodynamic pressure, and E is the
total electric field. We work in the electrostatic limit
and assume linear response, so that the disturbance in
the induced electron density n� n0 is small compared
with the unperturbed position-dependent density n0
(see Figure S3 in the Supporting Information, SI). In the
unperturbed system, p = p0 is the static hydrodynamic
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pressure, which according to eq 1 has to compensate
the static field E0 = �(rp0)/en0 produced by both n0
and the background jellium density.45 In practice, we
adopt the classical Thomas�Fermi model to obtain a
local approximation to the pressure from the variation
of the kinetic energy of a noninteracting electron gas
with respect to volume.47 This yields p = [9(3π2)2/3p2/
25me]n

5/3. A factor of 9/5 is added to this expression in
order to account for electron�electron Coulomb inter-
action, which leads to a low-momentum bulk plasmon
dispersion that agrees with the Lindhard formula.48,49

Now, neglecting higher-order terms in eq 1 beyond
linear response, and focusing onmonochromatic com-
ponents of frequency ω, we find

i(ωþ iγ)jind ¼ β3r Find

β

 !
þ e2n0

me
rφ (2)

where β = (3/5)1/2vF, vF = (p/me)(3π
2n0)

1/3 is the Fermi
velocity, and we have defined the induced elec-
tron current and density as jind = �en0v and Find =
�e(n � n0), as well as the induced scalar potential φ
(i.e.,E� E0 =�rφ). Equation2has to be self-consistently
solved together with the continuity equation

r 3 j
ind ¼ iωFind (3)

and Poisson's equation

r 3 Ebrφ ¼ �4πFind (4)

where we have defined ɛb as a background per-
mittivity, which arises from interband transitions and
core polarization, and we set it in practice to an
ω-dependent complex value leading to a bulk dielectric
function that matches measured data50 (see Figure S1
in the SI). This is particularly important in noble metals
(e.g., ɛb ≈ 9 for gold). For bounded media, we assume
this value of ɛb inside the jellium, whereas we take
ɛb = 1 outside (see Methods). This adds a sharp
dielectric background edge, which requires impos-
ing the continuity of φ and ɛb∂^φ, where ∂^ denotes

the normal derivative, in order to avoid unphysical
divergences in eq 4. Likewise, eq 3 leads to the
continuity of the current jind, whereas eq 2 imposes
the continuity of Find/β.

In this paper, we apply thismodel to study the effect
of nonabrupt electron density profiles at planar metal
surfaces, gaps, and thin films. We need to solve the
above equations for systems that are translationally
invariant along the surface directions and present
z-dependent profiles. The reflection and transmission
coefficients of those structures are obtained using a
transfer-matrix approach for each fixed value of the
parallel wave vector k ). More precisely, we describe the
structure as a concatenation of thin homogeneous
layers that are connected via the boundary conditions
noted above (see Methods for a detailed derivation).
This model is supplemented with measured optical
data for the metal dielectric function ɛ^(ω) (see eq 7).
In particular, we extract the background permittivity ɛb
for gold50 by subtracting a Drude term from ɛ^(ω) with
bulk plasmon energy pωp = 8.9 eV and width pγ =
0.071 eV (see Figure S1 in the SI). For aluminum,
the dielectric function is well reproduced with ɛb = 1
(i.e., negligible deeper band screening), pωp = 15.3 eV,
and pγ = 0.5 eV. In what follows, we compare the
model presented above (NL smooth) with its localβf 0
limit (local smooth), as well as with results obtained
by sharpening the surface profile to a step function
(NL sharp and local sharp analytical models). The latter
correspond to hydrodynamic approaches presented in
the literature.25�29,33�43

Plasmons in Single Metal Surfaces. We first examine the
role of the electron density profile on the plasmons of a
semi-infinite metal. The plasmon resonance frequency
is obtained for each k ) from the maximum of the
reflection coefficient, which we calculate according
to eq 15 (see Methods and insets of Figure 1). Results
for gold and aluminum are presented in Figure 1a and
Figure 1b, respectively. All four models (i.e., local and
nonlocal with either smooth or sharp density profiles)

Figure 1. Surface plasmon dispersion in gold and aluminum. We present results obtained from different models for the
surfaceplasmondispersion relation (see upper right legend), as comparedwith experimental data (symbols) for (a) gold10 and
(b) aluminum.51 The insets show the calculated reflection coefficient |rp| as obtained from the nonlocal (NL) smooth-profile
model. The small k ) analytical limit of the NL sharp model is shown as a dotted line in (b).
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produce relatively flat dispersion relations in gold,
in agreement with experiment.10 Incidentally, the
position of the d-band screening edge (i.e., the bound-
ary between bulk ɛb 6¼ 1 and vacuum ɛb = 1) is taken
at the jellium edge, assuming (111) surface orienta-
tion (see SI). Interestingly, the NL sharp model is in
clear disagreement with experiment for aluminum,51

whereas the other models lead again to relatively
dispersionless profiles. The numerical result for the
NL sharp model is further corroborated by comparison
with its analytical small k ) limit19,45,52 ω = ωp/(2)

1/2 þ
βk )/2 for A1 (ɛb= 1), shown as a dotted line in Figure 1b.

As we are interested in small distances, where the
effects of nonlocality and the smooth density profile
are more important, we examine next the local density
of optical states (LDOS), which corresponds to the sum
of the electric field intensity for all normalized optical
modes at a given position and frequency.53 This quan-
tity is uniquely defined in nonabsorbing media, where
it is simply proportional to the imaginary part of
the self-induced electric field at the position and along
the direction of a point dipole source.54 In particular, it
takes the value F0 = ω2/3π2c3 in free space. In lossy
media, we can still generalize this concept through an
ad hoc definition of the LDOS as the noted imaginary
part of the induced field. This definition coincides
with the true LDOS in nonabsorbing media but it is
only an artificial tool to investigate plasmon dispersion
relations in the interior of lossy materials. Details on its
calculation in the present smooth profile formalism are
given in the Methods section, where we also define its
parallel-wave-vector decomposition Fk )

. We focus for
simplicity on the LDOS component along the z direc-
tion, normal to the surface.

The LDOS near a gold surface is discussed in Figure 2
at a distance zd = 0.4 nm from the jellium edge. The
k )-resolved LDOS coincides in all four models for k ) = 0
(Figure 2b), as this limit effectively corresponds to large
distances with respect to the surface (e.g., the dipole
field from which the LDOS is calculated decays as
exp(�k )zd)), so that the detailed variation of the density
profile is not resolved. In contrast, the results depend on

the model for finite k ) (Figure 2a). Importantly, larger
variations are observed between sharp- and smooth-
profile models than between local and NL models.
We thus have a first indication that a proper account
of the smooth variation in the electron density pro-
file is more relevant at short distances than bulk spatial
dispersion through the parameter β. A similar conclu-
sion is obtained from the k )-integrated LDOS (Figure 2c).
Incidentally, except in the unrealistic local sharp model,
the LDOS spectra are rather featureless, indicating
that the surface-plasmon resonance that is otherwise
observed in far-field reflection (see inset to Figure 1a) is
attenuated by the contribution of high k ) components
when examining the near-the-surface response.

Gap Plasmons. The features in the k )-resolved LDOS
of a gap between two metal surfaces allows us to
characterize plasmons in this geometry. We show in
Figure 3 results for a gold gap (jellium-to-jellium dis-
tances d = 0.5 and 1 nm) and observe again a strong
variation when moving from a sharp to a smooth
density profile, whereas the effect of finite hydro-
dynamic pressure (i.e., β) is relatively smaller. At dis-
tances of a few nanometers, all four models converge
to similar dispersion relations (see Figure S4 in the SI),
but for the distances shown in Figure 3, the discrepan-
cies are striking. Smooth profiles basically displace the
spectral weight toward lower frequencies compared to
sharp profiles, also resulting in broader features. TheNL
sharp model (Figure 3a,e) produces less pronounced
redshifts and broadening compared to the local
sharp model (Figure 3c,g), as previously described in
the literature,23 but these changes areminor compared
to the effect produced by electron spill-out. Profile
smoothing also leads to a number of low-energy
features when combined with finite β (Figure 3d,h).
We show the gap LDOS as a function of gap distance
in Figure 4. The results are consistent with the con-
clusions extracted from Figure 3 by comparing differ-
ent models. For smooth profiles, which should be
considered as a more realistic description than sharp
interfaces, the spectra are dominated by low-energy
features that are blue-shifted with decreasing gap

Figure 2. Local density of optical states (LDOS) near a gold surface. (a,b) Spectral dependence of selected k ) contributions
to the LDOS. (c) Full LDOS obtained upon integration over k ). Different models are considered, as shown in the upper legend.
The LDOS is calculated at a distance zd = 0.4 nm relative to the jellium edge and normalized to the projected free-space LDOS
F0 = ω2/3π2c3.
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distance, in clear contrast to what happens for sharp
surfaces.

The k ) dependence of the plasmon energy in
the planar gap geometry can be used to obtain the
gap plasmon energies in curved geometries under the
assumption that the separation is small comparedwith
the radius of curvature. In particular for a sphere dimer,
we model the evolution of the plasmon amplitude ψ
through the Helmholz equation (r2þ k )

2)ψ = 0, where
k ) depends on the surface-to-surface separation at
a radial distance r away from the axis of symmetry.
Starting from a finite amplitude at r = 0, we obtain the
r f ¥ limit (i.e., in a region where k ) does no longer
depend on r because the separation is too large) upon
numerical integration and compare it with a combina-
tion of Hankel functions H0

(1) and H0
(2). The plasmon

energies result from the condition that the coefficient
of H0

(2) is zero (i.e., no incoming waves). The results of
this procedure are shown in Figure 5 for sharp (black
curves) and smooth (red curves) interfaces using both

Figure 3. Plasmon dispersion relation in the gap between two gold surfaces. We represent the k ) and energy dependence
of the LDOS at the gap center for separations (a�d) d = 0.5 nm and (e�h) d = 1 nm (see Figure 7b). Different models for the
response are considered, as indicated in the upper labels.

Figure 4. Gap plasmon dependence on gap size. We represent the LDOS at the gap center as a function of gap size d and
photon energy for both k ) = 0 (upper plots) and k ) = 0.3 nm�1 (lower plots) using different response models for gold (see
upper labels).

Figure 5. Gap plasmons in a gold sphere dimer. We
calculate the dependence of the gap plasmon energy
on surface-to-surface separation for spheres of 10
and 20 nm radius. Multiple-scattering (MS) theory
for a sharp density profile (blue) is compared with
an approximate method based upon the plasmons
in the planar gap geometry for either sharp (black)
or smooth (red) density profiles. Local and nonlocal
results are represented as dashed and solid curves,
respectively.
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local (dashed curves) and nonlocal (solid curves) mod-
els for the response.We further show the gapplasmons
obtained from a more rigorous multiple-scattering
(MS) procedure, which is so far only applicable to sharp
interfaces.27 This comparison corroborates the validity
of the approximate Helmholz equation method, which
agrees reasonably well with the MS results. Overall, we
observe again that the effect of smoothness in the
interface is large compared with spatial dispersion.
Essentially, the redshift produced by interparticle inter-
action is reduced due to the smoothness in the profile,
in agreement with experiments.11�13

Plasmons in Ultrathin Films. For a thin gold film con-
sisting of only a few atomic layers (see Figure 6a�d,
and Figures S9 and S10 in the SI), we observe
once more a dominant effect of the smooth density
profile compared with finite hydrodynamic pressure.
The latter produces just a small intensity reduction
and blue shift of the dominant plasmon band, which
strongly redshifts for decreasing k ) down to zero
energy in both local and NL sharp models. In contrast,
this feature only survives at k )d < 3 for smooth profiles,
it is blue-shifted with respect to the sharp profiles, and
it is saturated at a finite energy in the k )f 0 limit. For a
thickness d ≈ 1.2 nm (i.e., 5 atomic layers), this satura-
tion occurs at ∼1.8 eV. Interestingly, a dispersionless
feature appears at this energy, which is more pro-
nounced in the NL smooth model compared to the
local smooth model.

CONCLUSIONS AND OUTLOOK

In summary, we provide a fast method to simulate
the optical properties of metal surfaces that is appli-
cable to small distances and gaps between metals
down to the subnanometer scale. In this method, the
hydrodynamic model is extended to account for the
smooth variation of the electron density profile at the
surface. The latter is obtained from well-established
density-functional theory within the jellium model

approach.14 The smooth density profile turns out to be
of critical importance for quantitatively predicting the sur-
face optical response. Our results are consistentwith quan-
tum theory and experiments of gap plasmons,7,12,13,17

and in particular, they reproduce the small plasmon
redshift observed near touching compared with both
local and nonlocal hydrodynamic theories for abrupt
interfaces.
The smoothness of the density profile is a dominant

effect when compared with spatial dispersion intro-
duced through realistic values of the hydrodynamic
pressure parameter β. We understand that a fit of β in
an abrupt surface model is only providing a phenom-
enological description of experiment,12 but obviously
ignores electron spill-out effects. In fact, spatial disper-
sion alonewith β obtained from the bulk RPA response
predicts a plasmon blue shift that is too large in the
single interface and too small in the gap geometry,
with the smooth profile providing adominant correction
in the direction of the experiments. It should be noted
that a recent extension of the nonlocal hydrodynamic
model also explains the experimental observations
using abrupt interfaces and introducing a contribution
from electron diffusion.31 Surprisingly, without diffusion,
local smooth and nonlocal smooth models yield similar
results in all geometries under consideration.
The present approach can be easily extended to

other curved geometries, where it should find applica-
tion to predict the optical response and the interaction
of molecules in close proximity to metal surfaces.
This is in contrast to quantum analyses based on
first-principles, where the problem of finding first the
electron wave functions and then the self-consistent
susceptibility is unsurmountable with our current com-
putational capabilities when the size of the system
exceeds a few nanometers. There is a clear need to
investigate hybrid methods combining the power of
the present hydrodynamic approach for large systems
with the accuracy of first-principles methods for small

Figure 6. Plasmon dispersion in thin gold films. We compare the momentum and energy dependence of the reflection
coefficient |rp| for a film consisting of five (111) atomic layers (MLs) (a�d)with the reflection from a semi-infinite surface (e�h)
using different models for the response (see upper labels).
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subsystems (or even as a source of fitted spill-out
profiles and hydrodynamic parameters). We thus hope
that this work contributes to the ongoing effort of

understanding the optical behavior of arbitrarily com-
plex nanostructures that involve critical subnanometer
elements.

METHODS

Hydrodynamic Model for One-Dimensional Density Profiles. In this
work, we focus on surfaces, gaps, and thin films comprising
smooth planar interfaces that are homogeneous along
planes normal to the z direction, so that all physical quantities
can be expressed as a sum over wave vector components k )

and the dependence on R = (x,y) comes through an implicitly
understood exp(ik ) 3R) factor. This allows us to make the
substitution r f (ik ), ∂z). Now, eliminating the current from
eq 2, we find from eqs 3 and 4 the self-consistent scalar
equations

(β2Find)00 þ q2β2Find � 3
2
[Find(β2)0]0 ¼ �e2

me

n0
Eb

� �0
(Ebφ0) (5)

φ00 � k2)φþ
Eb0

Eb
φ0 ¼ � 4π

Eb
Find (6)

where the prime denotes differentiation with respect to z,
and we have defined

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E^=β2Eb)ω(ωþ iγ) � k2)

q
with Im{q} > 0. Interestingly, this expression involves the
local transversal permittivity

E^ ¼ Eb � ω2
p

ω(ωþ iγ)
(7)

which takes a Drude form with local plasma frequency ωp =
(4πe2n0/me)

1/2, defined in terms of the z-dependent unper-
turbed electron density n0. The complex background permit-
tivity ɛb is chosen such that eq 7 agrees with the measured
bulk dielectric function (see Figure S1 in the SI).

Our strategy to model a nonlocal medium that is inho-
mogeneous along the z direction consists in describing
it as a concatenation of uniform layers of vanishing thick-
ness. We thus need to have the solution of the above
equations for nonlocal homogeneous media, as well as the
reflection and transmission at sharp interfaces separating
the layers.

Nonlocal Homogeneous Medium. The right-hand side of eq 5 and
the last term in the left-hand side vanish in a homogeneous
medium (say medium j), so that we can write the induced
density as a combination of two waves propagating toward
positive and negative z directions,

Find ¼ A ( j)
1 eiq

( j)z þA ( j)
2 e�iq( j )z (8)

where the coefficientsA ( j)
l are determined from the boundary

conditions (see below). Inserting eq 8 into eq 6, we canwrite the
potential as

φ ¼ A ( j)
3 e�k )z þA ( j)

4 ek )z þ B( j)Find (9)

where

B( j) ¼ 4π(β( j))2

E( j)^ ω(ωþ iγ)
(10)

Obviously, these solutions depend on the properties ofmedium
j through n0 and ɛb, which act as input parameters that
determine other derived quanties such as β, q, and ɛ^.

Transfer Matrix Approach. We intend to find a transfer matrix
T(j,j�1) that relates the coefficients A ( j)

l in medium j to those in
medium j � 1 (see Figure 7c),

A ( j) ¼ T( j, j � 1)
3A

( j � 1) (11)

The two media are separated by a sharp interface, as illustrated in
Figure 7c. Using eqs 8 and 9 with the origins of the exponentials
defined at the interface, we find M( j)

3A
( j) ¼ M( j � 1)

3A
( j � 1),

where the rows of the matrix

M(j) ¼
B(j) B(j) 1 1

iq( j)E( j)b B( j) �iq(j)E( j)b B( j) �E( j)b k ) E( j)b k )

1=β( j) 1=β( j) 0 0

�C( j) C( j) e2

me
k )n

( j)
0 � e2

me
k )n

( j)
0

0
BBBBBBBBB@

1
CCCCCCCCCA

are extracted from φ, ɛb∂φ/∂z, Find/β, and jz
ind (i.e., the

magnitudes that are continuous across the interface). The
coefficient B( j) is given by eq 10, and we have further
defined

C( j) ¼ iq( j)(β( j))2E( j)b =E( j)^

Whenmore interfaces are considered, it is convenient to choose
the origins of the exponentials of eqs 8 and 9 at the right end
of each homogeneous layer, so that the transfer matrix T(j,j�1) in
eq 11 must include the propagation across layer j of thickness
Δzj. We find

T( j, j � 1) ¼ P( j)
3
1

M(j) 3M
( j � 1)

Figure 7. Illustration of smooth surface electron density profiles and discretization method used to simulate their optical
response. (a) Density profile for a planar gold surface (blue curve, taken from ref 44) relative to the jellium edge (z = 0).
(b) Same as (a) for a gap of jellium-to-jellium distance d. (c,d) Discretization along the normal direction z and relevant
parameters used in the numerical procedure.

A
RTIC

LE



DAVID AND GARCÍA DE ABAJO VOL. 8 ’ NO. 9 ’ 9558–9566 ’ 2014

www.acsnano.org

9565

where

P(j) ¼
eiq

(j)Δzj 0 0 0
0 e�iq(j)Δzj 0 0
0 0 e�k )Δzj 0
0 0 0 ek )Δzj

0
BB@

1
CCA

Finally, for a smooth interface described by N films of media
j = 1, ..., N, with medium j = 0 (j = N þ 1) to the left (right) of the
interface (see Figure 7d), the full transfer matrix reduces to

T ¼ 1

M(Nþ1) 3M
(N)

3 T
(N,N � 1):::T(1, 0)

and the propagation across the full interface is expressed as

A (Nþ1) ¼ T 3A
(0) (12)

Obviously, the z origin of the exponentials in medium Nþ 1
must be reset to the left end of that medium. Matrix T
propagates the coefficients of eqs 8 and 9 from position z = a
at the 0|1 interface to position z = b at the N|N þ 1 interface
(see Figure 7d).

In our simulations,we obtain full convergencewith increasing
N by setting all thicknesses Δzj ∼ 0.001 nm. For a metal surface,
only the varying part of the density profile near the interface has
to be computed in this way. Propagation in the bulk of the
material is simply described by eqs 8 and 9. Incidentally, the last
interface with a local medium (e.g., vacuum) has to be taken with
care, and we obtain converged results in the limit when the local
medium is simply approached by setting n0 f 0.

Calculation of Reflection Coefficients. We are now equipped to
obtain the dispersion relation for plasmons bound to planar
structures, including the effect of smooth electron-density profiles
(e.g., a singlemetal-dielectric planar interface, a thinmetal film, or a
dielectric gap buried inmetal). We consider positions z = a and z =
b placed in the homogeneous regions on either side of the
structure, separated by a smooth density profile (see Figure 7b).
Similar to Otto's configuration,55 surface plasmons can be excited
by an incident evanescent wave. We thus take a unit potential
incident fromthe left, aswell as its reflection at theplanar structure,
φ = e�k )(z�a) � rpe

k )(z�a), where rp is the reflection coefficient.
Surface plasmons are signaled by the poles of rp, which yield a
reflected component evenwithout anexternal source (i.e., they are
evanescent waves confined to the surface). This allows us to write
the coefficients in medium j = 0 (z < a region) as

A (0) ¼
0

A (0)
2

1
�rp

0
BBB@

1
CCCA (13)

where we disregard incident density components, but we still
maintain a reflecteddensity amplitudeA (0)

2 . Incidentally, the latter
multiplies a vanishing exponential in the local-medium side of an
interface, according to eq8. The transmitted coefficients across the
interface must only have components propagating toward the
right in the z > b region; that is,

A (Nþ1) ¼
A (Nþ 1)

1

0

A (Nþ 1)
3

0

0
BBBB@

1
CCCCA (14)

Inserting eqs 13 and 14 into eq 12, we find

rp ¼� T22T43 � T42T23
T42T24 � T22T44

(15)

Finally, the maxima of |rp| as a function of ω yield the
plasmon frequency for each parallel wave vector k ).

Calculation of the LDOS. We obtain the LDOS along the surface
normal (z direction) from the self-induced field at the position of
a unit dipole56

FLDOSind ¼ (1=2π)
Z ¥

0
dk )k )Fk )

(ω)

where

Fk )

(ω) ¼ 1
2π2ω

ImfEindz (k ),ω)g (16)

is the k )-resolved LDOS. The field is in turn calculated with the
methods described above. At a position zd sufficiently far from
the surface as to consider the electron spill-out negligible, eq 16
reduces to

Fk )

(ω) ¼ k )

πω
e�2k ) jzd jImfrpg (17)

where rp is the reflection coefficient defined in eq 15. For a gap,
multiple reflections at the surfaces permit expressing the LDOS
using a Fabry�Pérot-like model when the separation is so large
that the density becomes negligible at the gap center where the
LDOS is evaluated. We have verified that this model agrees well
at large separations with the full solution of the hydrodynamic
equations for the entire gap using the k )-resolved field from a
dipole as input (see Figure S7 in the SI).
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